


























































CHAPTER 5 

EXPERIMENTAL PROGRAM 

As part of a study of the response of stiff cylinders, static tests 

were conducted on buried cylindrical shells constructed from 6-inch

outside-diameter steel pipes. Wall thicknesses used in the tests 

were 1/8, 1/4, and 3/8 inch, as can be seen in Figure 5.1. By testing a 

specimen of the steel cylinder, Young's modulus was determined to be 

29.5 x 106 psi. The sand used in the tests was Cook's Bayou sand, a 

local fine-grained sand whose characteristics were described in Chapter 3. 

The test geometry was designed so that the central test section of 

the buried cylinder was isolated from the closed ends as shown in 

Figure 5.2. The Small (4-foot-diameter) Blast Load Generator (SBLG) at 

the WES was used in testing the buried cylinder. Figure 5.3 gives a 

cross-section elevation view of the test geometry and shows how the 

boundary value problem which was solved by the computer code fits into 

the test geometry. 

A double polyethylene liner with a greased interface was attached 

to the wall of the SBLG to reduce the wall friction. Because of the 

high lateral stiffness of the SBLG wall, a zero-displacement boundary 

condition was used in the finite element model as indicated in Figure 5.3. 

Much care was taken to insure that the test section of the cylinder was 

buried in the sand so that the symmetry indicated in Figure 5.3 was main-

-taine-d · (Ref'erence 16). It is assumed that the testing arrangement pro

vides a condition of plane stress along the axis of the buried cylinder. 

Strain measurements were recorded on the test section on both the 

inside and outside surfaces at 30-degree intervals around the cylinder. 

Vertical and horizontal stress components were recorded within the sand 

by means of a wafer-type diaphragm soil pressure transducer located 

6 inches from the outer wall of the test cylinder and at an elevation 

corresponding to the middepth of the structure. The static overpressure 

was monitored by pressure gages mounted in the loading bonnet of the 

test chamber. 
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Figure 5.1 Comparison of cylinder thicknesses. 
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Figure 5.2 Exploded view and geometry of test structure. 
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CHAPTER 6 

RESULTS 

As discussed in Chapter 3, the approach used in this study to in

clude the physical nonlinearities of the soil medium adds a succession 

of linear incremental problems. For the incremental problems, each 

element is assigned linearly elastic constants based on the current 

states of stress and strain that exist in that element. As one should 

expect, this type of detailed analysis is costly computerwise. For 

instance, in the following results for the JK model, 50 incremental 

problems were used for each cylinder configuration, requiring approxi

mately 21 minutes of Univac 1106 computer time. 

For solution, the boundary value problem described in Figure 5.3b 

was partitioned into 314 elements using 347 node points as shown in 

Figure 6.1. The cylinders are represented in the finite element ideali

zation using two elements to span their wall thicknesses. 

6.1 JK MODEL 

6.1.l Free-Field Response. In Figures 6.2, 6.3, and 6.4, the 

stress components measured in the soil are compared with the calculated 

stress components at the same locations. Several of the soil pressure 

gages did not operate during the tests, and thus their comparison plots 

are missing. The agreement between the _calculated a..l'J.d measured values 

(especially for the 3/8-inch cylinder) is an indication that the equiva

lent continuum model is representative of the soil insofar as the free

field stress components are concerned. 

6.1.2 Deflection. Figure 6.5 shows a comparison of the values of 

the change in vertical diameter ~D calculated by the JK model with the 

experimental values for each of the three cylinders. As can be seen, 

the calculated values consistently fall somewhat below those measured in 

the experiment. Good agreement is indicated for the 3/8-inch ~ylinder, 

but the agreement lessens for the thinner cylinders. 

6.1.3 Moment~ Figures 6.6 and 6.7 indi~ate the moments developed 



in the cylinders at the crown (0 degrees) and the invert (180 degrees), 

respectively. The discrepancies in these graphs are consistent with the 

deviations between calculated and measured deflections displayed in 

Figure 6.5; i.e. calculated momemts are consistently lower than the ex

perimental values and agreement is better for the thicker cylinder. 

6.1.4 Thrust •. Figures 6.8 and ?·9 are thrust comparisons for the 

crown and invert, respectively. Thrusts at the invert are generally in 

fair agreement with the calculations except for the higher pressure re

sponse of the 3/8-inch cylinder. Thrusts at the crown, except for the 

1/8-inch cylinder, show a wide discrepancy. The experimental thrust cal

culation involves taking the difference of two recorded strain measure

ments, and this accounts for the erratic variations of the thrust curves. 

The experimental measurements indi'cate that very little thrust developed 

at the crown of the thicker cylinders. Even though the oscillation in 

the experimental thrust curves indicates scatter in the data, it is felt 

that the curves reflect global behavior of the thrusts. 

6.2 PW MODEL 

The PW model was employed to demonstrate the flexibility of the 

computer code and to test the possibility that this more sophisticated 

soil model might yield better agreement with experimental results than 

the JK model. 

Since the calculations described in Section 6.1 have demonstrated 

the utility of the computer code and defined the problem areas of the JK 

model, only a limited number of calculations are presented for the PW 

model to demonstrate its accuracy in relation to the JK model. 

As shown in Figure 6.10, results for vertical diameter change are 

very nearly the same for the two models, with only slightly better agree

ment with experimental results being demonstrated by the PW model. Simi

lar results are shown for moment at the crown in Figure 6.11. 
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Figure 6.1 Finite element idealization of the buried cylinder configuration. 
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CHAPTER 7 

DISCUSSION OF RESULTS 

Although the geometry involved in this study is not complex, the 

nature of the problem was such that it presented a meaningful test of the 

soil-structure interaction code. The variation in the stiffness of the 

cylinders tested was sufficient to include cases of active arching 

(the structure carries less load proportionally than the surrounding 

soil) and passive arching (the structure carries more load proportionally 

than the surrounding soil). Thus, as discussed in the following section, 

the loading conditions of the soil in the vicinity of the cylinders dif

fered significantly from the 3/8-inch- to the 1/8-inch-thick cylinder. 

7.1 STRUCTURAL RESPONSE 

Using the JK model, the deformed shapes of the cylinders were 

calculated by subtracting out the rigid body motion of the cylinder 

(Figure 7.1). Only the vertical diameter change was measured in the 

experiment, and the recorded data points are indicated in the figure. 

The deformation patterns are substantially as one would expect under the 

loading conditions. 

The calculated deflections of the soil surface for the three cylin

der configurations are shown in Figure 7.2. These curves are indicative 

of the relative stiYYness oY tne cylinaers as compareato the soiT moder. 

Figure 7.3 contains comparisons of the vertical· stresses at the 

crown with the horizontal stresses at the spring line in the soil ele

ments which are adjacent to the cylinder. These graphs further illus

trate the stiffness of the cylinders relative to that of the soil: the 

3/8-inch cylinder giving a at the crown greater than a at the 
yy xx 

spring line; the 1/4-inch cylinder showing the two stress components to 

be relatively close together; the 1/8-inch cylinder having 

spring line greater than a at the crown. 
yy 
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7.2 DEGREE OF CORRELATION 

The computer code developed and the two soil models employed gen

erally yielded a fair approximation of the structural response of the 

cylinders tested. Free-field response of the soil was reproduced with 

good accuracy. Deflections were generally underpredicted by the code, 

but calculated values were reasonably close to those measured. Moments 

and thrusts were not as accurately predicted as deflections, and for the 

stiffer cylinders, there were significant discrepancies. 

There are several indications that the environment of the cylinders 

in the model was different from that in the test. For instance, the re

corded free-field components of stress are in reasonable agreement with 

the calculated values, but experimental values of thrust at the crown of 

the 3/8-inch cylinder indicate that it received essentially no lateral 

support from the soil at these pressure levels. On the other hand, the 

experimental values of thrust at the crown of the 1/8-inch cylinder in

dicate that it received lateral support from the soil. 

The most probable explanation for these discrepancies seems to be 

an area of reduced density in the soil below the spring line and adja

cent to the cylinder. Although sophisticated placement techniques were 

employed for the tests, it is very difficult to obtain a uniform back

fill, especially in this region. And, as discussed in the next para

graphs, the stiff cylinders would be very sensitive even to relatively 

-small -dtffererrc-es -in -density in -this region. 

Figure 7.1 indicates the different magnitudes of displacement ex

perienced by the soil in the region of the spring line of the cylinder. 

The stiff cylinder deflected very little at the spring line and thus 

would have derived very little support from the surrounding soil due to 

the reduced density zone. However, the relatively flexible cylinder 

experienced a deflection at the spring line that would mask the reduced 

density zone. Of course, if the compression mode of the cylinder is not 

mobilized, the load must be carried as moment. Thus the moment would be 

greater than expected in such cases. As indicated by Figure 6.6, this 
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is apparently the situation that developed in the experiments considered 

in this analysis. 

If the hypothesized reduced density zone exists, it is doubtful if 

any prediction scheme which uses a homogeneous soil model will be com

pletely successful for very stiff cylinders. The values of the moments 

and thrusts which develop in stiff cylinders are very sensitive to the 

immediate soil environment of the cylinder because of the small deforma

tion of the cylinder-soil interface. Thus, irregularities which are 

masked by the larger deflection associated with the flexible cylinders 

become extremely.important for stiff cylinders. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

Inherent characteristics of the finite element procedure make it 

applicable to arbitrary geometries, arbitrary loadings, and inhomogeneous 

medium problems. This type of numerical procedure is especially suited 

to problems where there is a need to take into account the soil-structure 

interaction effects. In many of the earlier efforts, the effects of the 

interaction phenomenon were generally neglected, or some crude model with 

springs representing the interaction effects of the soil was used. In 

the finite element representation of the system, the interaction effects 

are included automatically, and thus a more realistic treatment of the 

problem is possible. 

Although the geometry involved in this study was not complex, the 

nature of the problem was such that it presented a meaningful test for 

the soil-structure interaction code. The stiffness of the cylinders· 

involved varied sufficiently to cover both active and passive arching. 

Thus the loading conditions of the soil in the vicinity of the cylinders 

differed significantly from the 3/8-inch- to the 1/8-inch-thick cylinder. 

The computer code developed and the two soil models employed 

generally represent a reasonable method for predicting the response of 

buried cylinders, and undoubtedly other geometries as well. Free-field 

~esponse of the soil was reproduced with good accuracy. Deflections were 

generally underpredicted by the code, but calculated values were rea

sonably close to those measured. Moments and thrusts were not as ac

curately predicted as deflections, and for the stiffer cylinders, there 

were significant discrepancies. 

The nature of the discrepancies between experimental and calculated 

results indicates that lateral support of the cylinders did not develop 

in the experiments. Thus, in the experiments, the cylinders responded 

in essentially a flexural mode, whereas the finite element calculations 

developed a lateral load consistent with the uniform soil model assumed 
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for the anaJ.ysis. It should aJ.so be noted that both soil models gave 

very similar structural responses. 

Analysis of stiff cylinders is confounded by the fact that a de

tailed knowledge of the interface zone is needed, and, yet, this is the 

region about which the least is known. Meaningful measurements in this 

region are difficult to obtain. 

One method of attack on such problems would be to consider a region 

below the spring line and adjacent to the cylinder (the region where the 

sand placement is most difficult) as a material with properties different 

from the other sand. By making computer calculations using such a 

heterogeneous soil model, the influence of a reduced density zone could 

be varied in subsequent computer calculations in an attempt to obtain 

the experimental vaJ.ues for moment and thrust. 

If it is· possible to determine a heterogeneous soil model which 

predicts the high moment and low thrust response measured in these 

experiments, the same scheme can be examined for buried structures of 

other shapes. By extending the investigation to cylinders of larger 

diameter, perhaps the normal component of stress can be measured around 

the cylinder, giving an experimental indication of the value of the 

lateraJ. load on the buried cylinders. Therefore, it is recommended that 

future effort be directed along this approach. 
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APPENDIX A 

DERIVATION OF SHEAR MODULUS 

The idea of a limited shear may be made a property of the mathe

matical model by considering the inner energy ¢2 as 

Where: a = 

µ = 

r/J = -2fi[CI' - fi ln (1 + 
2~ ACJi)] 2 r-.L2 2µ .yo= v-.L2 

maximal second stress invariant 

shear modulus (initial tangent) 

I' = 
2 

second invariant of the deviatoric strain 

Using a stress definition from Reference 14 

Where: ¢ = the total inner energy 

cr and £ = the stress and strain tensors 

E = the unit matrix 

I
1

,I
2
,I

3 
=invariants of the strain tensor 

From the fact that 

I' = .!_ I 2 - I
2 2 3 1 

(A. l) 

(A.2) 

(A. 3) 

Equation A.l shows that ¢
2 

contributes to Q through the first two 

terms on the right-hand side of Equation A.2. That is, 

(A. 4) 

which may be written as 

~2 - - (A. 5) 
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where £ 1 is the deviatoric strain tensor. The deviatoric stress 

tensor for a is 

S - q - PE 

Where: 

p = 

From Equation A.5, we see that for q2 

Thus 

a¢2 
§

2 
= a - -- E 

-2 dI -
1 

Substituting Equation A.5 into Equation A.7 

a¢2 
s = - -- E:' 
-2 dI -

2 

Thus, from Equation A.8 

(A.6) 

(A. 7) 

(A. 8) 

{A.9) 

where s
2 

is the second invariant of the deviator stress. From Equa

tion A.3 

From Equation A.l 
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Using Equation A.10 in Equation A.9 

1 + 2~ ~1'~ ~ ) 

S - ( 
2

µ ~ I' 
2 - - 1 + ~~} 2 

(A.10) 

(A.11) 

The square root of the stress deviator is limited as indicated in Figure 

A.l. Thus, the current value of the shear modulus of G in the con

stitutive matrix [DJ (Equation 3.9) is defined by 

G = 

However, this expression for 

2µ 

1 + 2µ • r:::fi --ra v-.1.2 

G is programmed as a function of the 

first stress invariant in the form 

G = 2µ 

2µ-'1-I~ 1 + _ _,___ __ 

-.Ja + aP 

where a is associated with the slope- of the- Druc£er...Pra-ger yield sur-face 

for the particular soil involved, and P is the first stress invariant. 

As can be seen in Figure A.l, this causes the stress deviator limit to 

depend on the first invariant of the stress tensor. 
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